Beta-Catenin Signaling Plays a Disparate Role in Different Phases of Fracture Repair: Implications for Therapy to Improve Bone Healing
نویسندگان
چکیده
BACKGROUND Delayed fracture healing causes substantial disability and usually requires additional surgical treatments. Pharmacologic management to improve fracture repair would substantially improve patient outcome. The signaling pathways regulating bone healing are beginning to be unraveled, and they provide clues into pharmacologic management. The beta-catenin signaling pathway, which activates T cell factor (TCF)-dependent transcription, has emerged as a key regulator in embryonic skeletogenesis, positively regulating osteoblasts. However, its role in bone repair is unknown. The goal of this study was to explore the role of beta-catenin signaling in bone repair. METHODS AND FINDINGS Western blot analysis showed significant up-regulation of beta-catenin during the bone healing process. Using a beta-Gal activity assay to observe activation during healing of tibia fractures in a transgenic mouse model expressing a TCF reporter, we found that beta-catenin-mediated, TCF-dependent transcription was activated in both bone and cartilage formation during fracture repair. Using reverse transcription-PCR, we observed that several WNT ligands were expressed during fracture repair. Treatment with DKK1 (an antagonist of WNT/beta-catenin pathway) inhibited beta-catenin signaling and the healing process, suggesting that WNT ligands regulate beta-catenin. Healing was significantly repressed in mice conditionally expressing either null or stabilized beta-catenin alleles induced by an adenovirus expressing Cre recombinase. Fracture repair was also inhibited in mice expressing osteoblast-specific beta-catenin null alleles. In stark contrast, there was dramatically enhanced bone healing in mice expressing an activated form of beta-catenin, whose expression was restricted to osteoblasts. Treating mice with lithium activated beta-catenin in the healing fracture, but healing was enhanced only when treatment was started subsequent to the fracture. CONCLUSIONS These results demonstrate that beta-catenin functions differently at different stages of fracture repair. In early stages, precise regulation of beta-catenin is required for pluripotent mesenchymal cells to differentiate to either osteoblasts or chondrocytes. Once these undifferentiated cells have become committed to the osteoblast lineage, beta-catenin positively regulates osteoblasts. This is a different function for beta-catenin than has previously been reported during development. Activation of beta-catenin by lithium treatment has potential to improve fracture healing, but only when utilized in later phases of repair, after mesenchymal cells have become committed to the osteoblast lineage.
منابع مشابه
The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملMidkine-Deficiency Delays Chondrogenesis during the Early Phase of Fracture Healing in Mice
The growth and differentiation factor midkine (Mdk) plays an important role in bone development and remodeling. Mdk-deficient mice display a high bone mass phenotype when aged 12 and 18 months. Furthermore, Mdk has been identified as a negative regulator of mechanically induced bone formation and it induces pro-chondrogenic, pro-angiogenic and pro-inflammatory effects. Together with the finding...
متن کاملInhibition of Sclerostin by Systemic Treatment with a Sclerostin Monoclonal Antibody Enhances Fracture Healing in Mice and Rats
INTRODUCTION Fracture healing is a complex biological process involving inflammation, granulation, callus formation, and bone modeling/remodeling. Optimal fracture healing results in complete restoration of bone structure and function to the pre-fracture levels. However, some fractures are associated with a high risk of delayed union, non-union and other complications. This leads to significant...
متن کاملBeta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells
Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...
متن کاملThe Wnt Serpentine Receptor Frizzled-9 Regulates New Bone Formation in Fracture Healing
Wnt signaling is a key regulator of bone metabolism and fracture healing. The canonical Wnt/β-catenin pathway is regarded as the dominant mechanism, and targeting this pathway has emerged as a promising strategy for the treatment of osteoporosis and poorly healing fractures. In contrast, little is known about the role of non-canonical Wnt signaling in bone. Recently, it was demonstrated that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Medicine
دوره 4 شماره
صفحات -
تاریخ انتشار 2007